Система в философии определение. Понятие материи в философии

СИСТЕМА

Адекватной общефилос. основой исследования С. являются принципы материалистич. (всеобщей связи явлений, развития, противоречия и др. ) . Важнейшую роль в этой связи играет диалектико-материалистич. системности, в которого входят филос. представления о целостности объектов мира, о соотношении целого и частей, о взаимодействии С. со средой (являющееся одним из условий существования С.) , об общих закономерностях функционирования и развития С., о структурированности каждого системного объекта, об активном характере деятельности живых и социальных С. и т. п. Труды К. Маркса, Ф. Энгельса, В. И. Ленина содержат богатейший материал по филос. методологии изучения С.- сложных развивающихся объектов (см. Системный подход) .

Для начавшегося со 2-й пол. 19 в. проникновения понятия С. в различные области конкретно-науч. знания важное имело создание эволюц. теории Ч. Дарвина, теории относительности, квантовой физики, структурной лингвистики и др. Возникла задача построения строгого определения понятия С. и разработки оперативных методов анализа С. Интенсивные исследования в этом направлении начались только в 40-50-х гг. 20 в. , однако ряд конкретно-науч. принципов анализа С. был сформулирован ранее в тектологии А. А. Богданова, в работах В. И. Вернадского, в праксеологии Т. Ко-тарбиньского и др. Предложенная в кон. 40-х гг. Л. Берталанфи программа построения «общей теории систем» явилась одной из попыток обобщённого анализа системной проблематики. Дополнительно к этой программе, тесно связанной с развитием кибернетики, в 50-60-х гг. был выдвинут ряд общесистемных концепций и определений понятия С. (в США, СССР, Польше, Великобритании, Канаде и др. странах) .

При определении понятия С. необходимо учитывать теснейшую его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие С. имеет чрезвычайно широкую область применения (практически каждый может быть рассмотрен как С.) , постольку его достаточно полное предполагает построение семейства соответств. определений - как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить осн. системные принципы: целостности (принципиальная несводимость свойств С. к сумме свойств составляющих её элементов и невыводимость из последних свойств целого; каждого элемента, свойства и отношения С. от его места, функций и т. д. внутри целого) , структурности ( описания С. через установление её структуры, т. е. сети связей и отношений С.; обусловленность поведения С. не столько поведением её отд. элементов, сколько свойствами её структуры) , взаимозависимости С. и среды (С. формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия) , иерархичности (каждый С. в свою очередь может рассматриваться как С., а исследуемая в данном случае С. представляет собой один из компонентов более широкой С.) , множественности описания каждой С. (в силу принципиальной сложности каждой С. её адекватное требует построения множества различных моделей, каждая из которых описывает лишь определ. С.) и др.

Каждая С. характеризуется не только наличием связей и отношений между образующими её элементами, но и неразрывным единством с окружающей средой, во взаимодействии с которой С. проявляет свою целостность. Иерархичность, многоуровневость, структурность - свойства не только строения, морфологии С., но и ей поведения: отд. уровни С. обусловливают определ. аспекты её поведения, а целостное функционирование оказывается результатом взаимодействия всех её сторон и уровней. Важной особенностью большинства С., особенно живых, технич. и социальных С., является передача в них информации и наличие процессов управления. К наиболее сложным видам С. относятся целенаправленные С., которых подчинено достижению определ. целей, и самоорганизующисся С., способные в процессе функционирования видоизменять свою структуру. Для многих сложных живых и социальных С. характерно наличие разных по уровню, часто не согласующихся между собой целей.

Существ. аспектом раскрытия содержания понятия С. является выделение различных типов С. В наиболее общем плане С. можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на С. неорга-нич. природы (физич., геологич., химич. и др. ) и живые С., куда входят как простейшие . С., так и очень сложные биология, объекты типа организма, вида, экосистемы. Особый материальных живых С. образуют социальные С., чрезвычайно многообразные по своим типам и формам (начиная от простейших социальных объединений и вплоть до социально-экономич. структуры общества) . Абстрактные С. являются продуктом человеч. мышления; они также могут быть разделены на различных типов (особые С. представляют собой понятия, гипотезы, теории, последоват. смена науч. теорий и т. д.) . К числу абстрактных С. относятся и науч. знания о С. разного типа, как они формулируются в общей теории С., спец. теориях С. и др. В науке 20 в. большое уделяется исследованию языка как С. (лингвистич. С.) ; в результате обобщения этих исследований возникла общая знаков - . Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализов., логич. С. (метало-гика, метаматематика) . Результаты этих исследований широко применяются в кибернетике, вычислит. технике и др.

При использовании других оснований классификации С. выделяются статичные и динамичные С. Для статичной С. характерно, что её с течением времени остаётся постоянным (напр., газ в ограниченном объёме - в состоянии равновесия) . Динамичная С. изменяет своё состояние во времени (напр., живой ) . Если знание значений переменных С. в данный времени позволяет установить состояние С. в любой последующий или любой предшествующий моменты времени, то такая С. является однозначно детерминированной. Для вероятностной (стохастич.) С. знание значений переменных в данный момент времени позволяет только предсказать распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношений С. и среды С. делятся на закрытые - замкнутые (в них не поступает и из них не выделяется , происходит лишь обмен энергией) и открытые - незамкнутые (постоянно происходит ввод и не только энергии, но и вещества) . По второму закону термодинамики, каждая закрытая С. в конечном счёте достигает состояния равновесия, при котором остаются неизменными все макроскопич. величины С. и прекращаются все макроскопич. процессы (состояние макс, энтропии и миним. свободной энергии) . Стационарным состоянием открытой С. является подвижное равновесие, при котором все макроскопич. величины остаются неизменными, но непрерывно продол-жаются макроскопич. процессы ввода и вывода вещества.

В процессе развития системных исследований в 20 в. более чётко были определены задачи и функции разных форм теоретич. анализа всего комплекса системных проблем. Осн. задача специализиров. теорий С.- построение конкретно-науч. знания о разных типах и разных аспектах С., в то как главные проблемы общей теории С. концентрируются вокруг логико-методологич. принципов анализа С., построения метатеории системных исследований.

Маркс К. и Энгельс Ф., Соч., т. 20; т. 26, ч. 2; т. 46, ч. 1; Ленин В. И., ПСС , т. 18, т. 29; Рапопорт А., Различные подходы к общей теории С., пер. с польск. , в кн. : Системные исследования. Ежегодник 1969 , M., 1969 ; Гвишиани Д. М., Организация и , M., 19722; Огурцов А. П., Этапы интерпретации системности знания, в кн. : Системные исследования. Ежегодник 1974 , М., 1974 ; Садовский В. Н., Основания общей теории С., М., 1974 ; Захаров В. ?., ?оспелов Д. ?., Xазацкий В, Е., С. управления, М., 1977 ; Уемов А. И., Системный подход и общая теория С., М., 1978 ; Месарович М., Такахара Я., Общая теория С.: матем. основы, пер. с англ. , М., 1978 ; Афанасьев В. Г., Системность и , М., 1980 ; Кузьмин В.П., Принцип системности в теории и методологии К. Маркса, ?., 19802; Modern systems research for the behavioral scientist. A sourcebook, ed. by W. Buckley, Chi 1968 ; Bertalanffy L. ?., General system theory. Foundations, development, applications, N. Y. , 19692; Zadeh L A Polak E., System theory, ?. ?., 1969 ; Trends in general systems theory, ed. by G. J. Klir, N. Y. , 1972 ; Laszlo E., Introduction to systems philosophy, N. Y. , 1972 ; Sutherland J. W., Systems: analysis, administration and architecture, N. Y. , 1975 ; Mattessich R., Instrumental reasoning and systems methodology, Dordrecht - Boston, 1978 ;

В. Н. Садовский

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

СИСТЕМА

(от греч. systema – целое)

объединение некоторого разнообразия в и четко расчлененное целое, которого по отношению к целому и др. частям занимают соответствующие им места. Философская система является соединением принципиальных и основополагающих знаний в некоторую органическую целостность, доктрину; см. Метод. В Новое время, в частности благодаря феноменологии Гуссерля, стали обращать внимание на опасность т. н. «системосозидающего мышления», когда сначала пытаются создать систему, а затем на ее основании конструировать и имитировать , вместо того чтобы познавать ее. Этой опасности не избежали такие мыслители, как Кант, Гегель. Справедливо замечание о том, что довольно часто наиболее ценным в философии великих создателей систем является то, что не укладывается в их системы.

Философский энциклопедический словарь . 2010 .

СИСТЕ́МА

(от греч. σύστημα – целое, составленное из частей; соединение) – множество элементов с отношениями и связями между ними, образующее определ. целостность. Это выражает не все, а лишь нек-рые, наиболее употребительные в совр. лит-ре аспекты понятия С.

Понятие С. встречается впервые у стоиков, толковавших его в онтологич. смысле, как мировой . В последующем системность бытия была одним из оснований концепций Шеллинга, Гегеля и др. Однако преобладающим было употребление понятия С. применительно к познанию, в гносеологии и логике, предметами к-рых были С. знания и способы их построения. На системность познания указывал Кант, требовавший, чтобы знания образовывали не , а С., в к-рой целое важнее частей. Ту же позицию занимали Кондильяк, Шеллинг, Гегель. Назв. "С." применялось к филос. концепциям, в рамках к-рых и понятия объединены по более или менее последовательно проведенному принципу, а также к нек-рым науч. теориям (типа геометрии Эвклида, С. формальной логики).

Еще один аспект понятия С. связан с задачами систематизации, возникающими практически в каждой науке на определ. этапе ее развития (типа систематики Линнея в биологии, систематики в кристаллографии и т.д.). Это связано с тем, что системность знания, т.е. его достаточно жесткая организованность по определ. правилам, всегда выступает как существ. науки.

Второе рождение понятия С., сделавшее его одной из центр. категорий совр. науки, можно отнести к сер. 19 в., когда Маркс и Дарвин поставили на науч. почву целостное изучение таких сложных объектов, как общество (органичная С., по определению Маркса) и биологич. . Филос. предпосылки такого подхода начала формировать нем. классич. , подвергшая радикальной критике принципы механистич. мировоззрения и выдвинувшая задачу перехода к новым формам науч. мышления. Экономич. учение Маркса и эволюц. теория Дарвина развили эти предпосылки и реализовали их на конкретном науч. материале. Методологически самым важным в этих концепциях был отказа от элементаризма, т.е. от поисков "последних", далее не делимых частей, из к-рых можно и должно объяснить целое. Новые принципы подхода к сложным объектам получили дальнейшее в связи с проникновением в науку вероятностных методов, существенно расширивших понимание причинности и разрушивших об однозначном детерминизме как о единственно возможной схеме объяснения строения и "жизни" сложных объектов.

На рубеже 19–20 вв. возникают попытки применить эти новые принципы при построении специально науч. концепций, особенно в сфере биологии и психологии (см. Организмические теории). Это проникает и в др. науки. На рассмотрение языка как С. опирается Соссюра, положившая начало структурализму в языкознании. Анализ формальных С. занял значит. в совр. математике и матем. логике. В кибернетике понятие С. стало одним из центральных с самого возникновения этой дисциплины. С сер. 20 в. подход к объектам исследования как к С. начинает применяться в экономич. науке, в семиотике, истории, педагогике, географии, геологии и нек-рых др. науках. В это же время в эру С. вступает , в к-рой центр. место занимают , создание и эксплуатация сложных С. типа С. управления связью, движением транспорта, совр. оборонных С., космич. аппаратов и т.д. Системный подход становится серьезным фактором организации совр. произ-ва.

Переход науки и техники к систематич. изучению сложных объектов и очевидная разработки для этого новых принципов и методов анализа уже в первой четв. 20 в. породили попытки создания системных концепций обобщающего характера. Одной из первых концепций такого рода явилась А. А. Богданова, по ряду причин не получившая достаточного признания в период ее создания. Теоретико-системное движение широко развивается после опубликования Л. Берталанфи в 50-х гг. "общей теории систем", в противовес к-рой целый ряд исследователей выдвигает свои варианты общесистемных концепций (У. Росс Эшби, О. Ланге, Р. Акоф, М. Месарович, А. И. Уемов, А. А. Малиновский, А. А. Ляпунов и др.).

Интенсивное изучение многообразных типов С., проводимое на разных уровнях анализа, от сугубо эмпирического до самого абстрактного, превратило С. в особое направление развития совр. науки, гл. задачами к-рого в наст. время являются отыскание и систематизация специфич. принципов системного подхода к объектам изучения и построение адекватных таким принципам аппаратов анализа. Однако крайне широкие рамки совр. системных исследований затрудняют эффективные обобщения в этой области.

Трудности возникают уже при попытках построить определение понятия С. Во-первых, это понятие чрезвычайно широко используется в самых разных сферах научной и практич. деятельности с явно не совпадающими значениями: формализованные знаковые С., изучаемые в логике и математике, и такие С., как живой организм или совр. С. управления, вряд можно рассматривать как виды одного и того же понятия С. Во-вторых, гносеологич. цели приписывания тем или иным объектам свойств С. далеко не всегда очевидны и оправданы: практически любой объект, материальный или идеальный, можно представить как С., выделив в нем множество элементов, отношения и связи между ними и зафиксировав его целостные характеристики; однако очень трудно (если вообще возможно) найти такие нетривиальные задачи, для решения к-рых возникла бы необходимость в представлении как С. таких объектов, как, напр., карандаш или отд. разговорного языка. В то же время понимание как С. широкого множества сложных объектов – биологических, психологических, социально-экономических и т.д. – с несомненностью открывает новые возможности в их исследовании. Поиски общего, "стандартного" определения понятия С. требуют развернутых представлений о разных типах системных объектов, их специфических и общих свойствах; однако в наст. время такие представления являются далеко не полными. Поэтому наиболее эффективный путь экспликации содержания понятия С. состоит для совр. этапа системных исследований в содержат. рассмотрении многообразия значений понятия С. В качестве исходного пункта такого рассмотрения может быть взято понимание С. как целостного множества взаимосвязанных элементов. Типологич. таких множеств позволяет получить семейство значений понятия С., причем нек-рые из них характеризуют не понятие С. вообще, а определ. виды С. В своей совокупности эти значения не только выделяют все существ. признаки С., но и способствуют раскрытию существа системного метода познания. Очевидно, что такое рассмотрение, проводимое в содержательно-интуитивной плоскости, должно дополняться формальными построениями, строго описывающими по крайней мере нек-рые особенности С.

Как и любое др. познавательное , понятие С. призвано характеризовать нек-рый и д е а л ь н ы й о б ъ е к т. Исходным пунктом его конструирования является м н о ж е с т в о элементов, на природу к-рых не накладывается никаких ограничений и к-рые рассматриваются как далее неделимые, при данном способе рассмотрения, единицы анализа. При этом подразумевается возможность, при др. целях и способах исследования, иного расчленения того же объекта с выделением иных элементов в рамках С. другого уровня и вместе с тем – возможность понимания рассматриваемой С. как элемента (или подсистемы) С. более высокого уровня. Это означает, что при подходе к объекту как к С. любое отд. системное представление этого объекта является относительным. Отсюда же следует, что для С. обычно характерна и е р а р х и ч н о с т ь строения – последоват. С. более низкого уровня в С. более высокого уровня.

Элементы множества, образующего С., находятся между собой в определ. отношениях и связях. Системное исследование предполагает не только установление способов описания этих отношений и связей, но – что особенно важно – выделение тех из них, к-рые являются с и с т е м о о б р а з у ю щ и м и, т.е. обеспечивают целостности – относительно обособленного функционирования и, в нек-рых случаях, развития С. Отношения и связи в С. при определ. представлении С. сами могут рассматриваться как ее элементы, подчиняющиеся соответствующей иерархии. Это позволяет строить различные, не совпадающие между собой последовательности включения С. друг в друга, описывающие исследуемый объект с разных сторон.

Множество взаимосвязанных элементов, образующих С., противостоит с р е д е, во взаимодействии с к-рой С. проявляет и создает все свои свойства; этого взаимодействия весьма различен. В общем случае различают строго каузальное и статистическое, вероятностное воздействия среды на С. Функционирование С. в среде опирается на определ. у п о р я д о ч е н н о с т ь ее элементов, отношений и связей. Структурно и функционально различные аспекты упорядоченности образуют основу для выделения в С. ее подсистем, причем разбиение (декомпозиция) С. на подсистемы относительно и может определяться как нек-рыми объективными свойствами С., так и спецификой используемых исследовательских процедур. Развитием понятия упорядоченности являются понятия структуры и организации С. А. А. Малиновским предложено С. по их структуре, в зависимости от характера и "силы" связи элементов, на жесткие, корпускулярные (дискретные) и звездные (смешанные) (см., напр., А. А. Малиновский, Некоторые вопросы организации биологич. систем, в кн.: Организация и управление, М., 1968).

Как упорядоченное целостное множество взаимосвязанных элементов, обладающее структурой и организацией, С. в своем взаимодействии со средой демонстрирует определ. п о в е д е н и е, к-рое может быть реактивным (т.е. определяться во всех осн. пунктах воздействиями среды) или активным (т.е. определяться не только состоянием и воздействиями среды, но и собств. целями С., предполагающими преобразование среды, подчинение ее своим потребностям). В этой связи в С. с активным поведением важнейшее место занимают целевые характеристики самой С. и ее отд. подсистем и взаимосвязь этих характеристик (в частности, цели могут согласовываться друг с другом или противоречить друг другу). Как коренное свойство биологических С. поведения рассматривается в концепции физиологии активности. Целевое (телеологич.) С. может выступать и только как средство анализа, если идет о С., лишенных собств. целей. Различение синхронического и диахронич. аспектов поведения приводит к различению функционирования и эволюции, развития С.

Специфич. чертой сложно организованных С. является наличие в них процессов у п р а в л е н и я, к-рые, в частности, порождают необходимость информационного подхода к исследованию С., наряду с подходами с т. зр. вещества и энергии. Именно управление обеспечивает поведения С., его целенаправл. характер, а специфич. черты управления приводят к выделению классов многоуровневых, многоцелевых, самоорганизующихся и т.п. систем.

Естественно, что попытки формальных определений понятия С. учитывают лишь нек-рые из перечисленных содержат. признаков этого понятия, причем выделенное содержат. свойство определяет проводимую в том или ином случае классификацию С. Стремление охватить в определении понятия С. максимально широкий класс объектов, содержательно-интуитивно относимых к С., приводит к определению С. как отношения. Напр., М. Месарович определяет понятие С. как прямое (декартово) произведение произвольного семейства множеств SV1×. . . ×Vn, т.е. как , определенное на этом семействе. Содержательно это определение означает спецификацию С. путем последоват. установления отношений, связывающих значения, к-рые могут принимать Vi-атрибуты исследуемого объекта. В зависимости от числа мест отношения, определяющего С., устанавливается классификация С. В рамках введенного формализма Месарович определяет понятие многоуровневой многоцелевой С., для чего формализует понятие цели С. (см. M. Mesarović, General systems theory and its mathematical foundations, "IEEE transactions on systems science and cybernetics", 1968, v. 4).

Близкое к определению Месаровича понимание С. сформулировано А. Холлом и Р. Фейдженом: С. есть множество объектов вместе с взаимоотношениями между объектами и между их атрибутами (см. A. D. Hall, R. Ε. Fagen, Definition of system, "General Systems", 1956, v. 1, p. 18). Т. к. атрибуты объектов также можно рассматривать как объекты, это определение сводится к пониманию С. как отношений, определенных на множестве объектов.

Понимание С. как отношения связано с включением в класс С. таких объектов, к-рые содержательно-интуитивно не рассматриваются как С. Поэтому в лит-ре сформулированы более узкие определения С., налагающие на содержание этого понятия более жесткие требования. Напр., Берталанфи определяет С. как элементов, находящихся во взаимодействии (см. L. von Bertalanffy, Allgemeine Systemtheorie, "Deutsche Universitätszeitung", 1957, H. 12, No 5–6, S. 8–12), и различает закрытые (в к-рых возможен лишь обмен энергией) и открытые (в к-рых происходит обмен энергией и веществом) С., причем в качестве стационарного состояния открытой С. определяется состояние подвижного равновесия, когда все макроскопич. величины С. неизменны, но непрерывно продолжаются микроскопич. процессы ввода и вывода вещества. Общим уравнением открытой С., по Берталанфи, является уравнение вида dQi/dt=Ti+Pi(i=1, 2, ... n), где Qi – определ. характеристика i-го элемента С., Ti – , описывающая скорость переноса элементов С., Рi – функция, описывающая появление элементов внутри С. При Τi=0 уравнение превращается в уравнение закрытой С.

Опираясь фактически на определение Берталанфи, Ст. Бир предложил классифицировать С. одновременно по двум основаниям – степени сложности С. и характеру их функционирования, детерминированному или вероятностному (см. Ст. Бир, Кибернетика и управление производством, пер. с англ., М., 1963, с. 22–36).

Определение С. с помощью понятия связи наталкивается на трудности определения самого этого понятия (в частности, выделения системообразующих связей) и очевидно более узкий объем класса соответствующих С. Учитывая это, А. И. Уемов предложил определять С. как множество объектов, на к-ром реализуется заранее определ. отношение с фиксированными свойствами, т.е. S= P, где m – множество объектов, Ρ – свойство, R – отношение. Здесь существен порядок перехода от Ρ к R и m. В двойственном ему определении S=R[(m)Р] С. рассматривается как множество объектов, обладающих заранее определ. свойствами с фиксированными между ними отношениями. На основе характера m, Ρ и R и взаимоотношений между ними проводится классификация С. (см. А. И. Уемов, С. и системные параметры, в кн.: Проблемы формального анализа систем, М., 1968).

В понимании содержания понятия С. важную роль играют определения отд. классов С. Один из наиболее изученных классов – формальные С., формализованные языки, исследуемые в логике, метаматематике и нек-рых разделах лингвистики. Неинтерпретированный представляет собой синтаксич. С., интерпретированный – семантич. С. В логике и методологии науки подробно исследованы методы построения формализованных С. (см. Метод аксиоматический), а сами такие С. используются как средства моделирования рассуждения (естественного и научного), естеств. языков и для анализа ряда лингвистич. проблем, возникающих в совр. технике (языка ЭВМ, общения человека с ЭВМ и т.д.). Широкому изучению подвергаются различные виды кибернетических С. Напр., Г. Греневский вводит понятие относительно обособленной С., воздействие на к-рую остальной части Вселенной происходит только через входы С., а ее воздействие на Вселенную – только через выходы С. (см. Г. Греневский, Кибернетика без математики, пер. с польск., М., 1964, с. 22–23). А. А. Ляпунов и С. В. Яблонский определяют понятие управляющей С. через указание входов и выходов, состояний, переходного режима и реализацию нек-рого внутр. алгоритма переработки информации; математически управляющая С. представляет собой ориентированный граф, свойства к-рого моделируют свойства соответствующих ему реальных С. (см. "Проблемы кибернетики", вып. 9, М., 1964). Потребности совр. техники стимулировали попытки определения и исследования свойств самоуправляющихся, самооптимизирующихся, самоорганизующихся С. (см. Самоорганизующаяся система), а также С. – машина, больших С., сложных автоматизированных С. управления. Специфика больших С., в к-рые др. типы С. могут входить в качестве подсистем, состоит в следующем: 1) большие размеры – по числу частей и выполняемых функций; 2) сложность поведения как очень большого числа взаимосвязей элементов С.; 3) наличие общей цели С.; 4) статистич. распределение поступления в С. внешних воздействий; 5) конкурирующий, состязательный характер мн. больших С.; 6) широкая автоматизация, основанная на использовании совр. вычислит. средств при обязат. участии человека (оператора); 7) большие сроки создания таких С.

Многообразие содержательных и формальных определений и употреблений понятия С. отражает очевидный создания и развития новых принципов методологии науч. познания, ориентированного на изучение и конструирование сложных объектов, и многообразие самих этих объектов, а также возможных задач их изучения. Вместе с тем тот факт, что все эти разработки используют понятие С. в качестве центрального, позволяет объединять их в рамках системного подхода как особого направления развития совр. науки. При этом сложность и новизна проблематики порождают необходимость одноврем. развития системного подхода в неск. сферах. К их числу относятся:

1) Разработка филос. оснований и предпосылок системного подхода (Л. Берталанфи, А. Раппопорт, К. Боулдинг, Р. Акоф, У. Росс Эшби и др.; эту сферу разрабатывают также исследователи, стоящие на позициях диалектич. материализма, – О. Ланге, А. И. Уемов, Я. Камарит и др.). Предметом анализа здесь являются как С., т.е. попытки

построения системной "картины мира", выявления общих свойств системных объектов, так и гносеологич. аспекты исследования С – построение, анализ и систематизация категориального аппарата системного подхода.

2) Построение логики и методологии системного исследования, осуществляемое указ. авторами, а также М. Месаровичем, М. Тода и Э. Шуфордом, рядом сов. логиков. Осн. содержание работ в этой сфере составляют попытки формализации понятий системного подхода, разработка специфич. процедур исследования и построение соответствующих логич. исчислений.

3) Спец. научные системные разработки – приложение принципов системного подхода к различным отраслям знания, как теоретическим, так и эмпирическим. Эта является в наст. время наиболее развитой и обширной.

4) Построение различных вариантов общей теории систем в узком смысле. После обнаружения несостоятельности глобальных претензий "общей теории систем" Берталанфи работы в этой области направлены скорее на создание в той или иной мере обобщенной концепции, формулирующей принципы исследования С. определ. рода, чем на построение всеобщей теории, относящейся в принципе к любым С. По-видимому, над качеств. концепциями теории С. (подобными, напр., концепции Берталанфи) будут надстраиваться формализованные представления разной степени общности, от более общих и абстрактных до частных, имеющих дело с отд. задачами и проблемами теории С. Если в наст. время в этой области имеет место заметное многообразие качеств. пониманий теории С. и используемых формальных аппаратов (теории множеств, алгебры, теории вероятностей, матем. логики и т.д.), то на последующих этапах развития первоочередной станет задача синтеза.

Лит.: Богданов Α. Α., Очерки всеобщей организационной науки, Самара, 1921; Шеллинг Ф. В. И., С. трансцендентального идеализма, М., 1936; Кондильяк Э. Б., Трактат о С. ..., М., 1938; Гуд Г. Χ., Μакол Р. Э., Системотехника, пер. с англ., М., 1962; Хайлов К. М., Проблемы системной организованности в теоретич. биологии, "Журн. общей биологии", 1963, т. 24, No 5; Афанасьев В. Г., Проблема целостности в философии и биологии, М., 1964; Щедровицкий Г. П., Проблемы методологии системного исследования, М., 1964; Эшби У. Р., С. и , "ВФ", 1964, No 3; Проблемы исследования С. и структур. Материалы к конференции, М., 1965; Садовский В. Н., Методологич. проблемы исследования объектов, представляющих собой С., в кн.: Социология в СССР, т. 1, М., 1965; Общая теория С., пер. с англ., М., 1966; Блауберг И. В., Юдин Э. Г., Системный подход в социальных исследованиях, "ВФ", 1967, No 9; Исследования по общей теории С., Сб. переводов, М., 1969; Системные исследования – 1969. Ежегодник, М., 1969; Блауберг И. В., Садовский В. Н., Юдин Э. Г., Системный подход: предпосылки, проблемы, трудности, М., 1969; Кремянский В. И., Структурные уровни живой материи, М., 1969; Проблемы методологии системного исследования, под ред. И. В. Блауберга и др., М., 1970; Веrtаlanffу L. von [а. о.], General system theory: a new approach to unity of science, "Human biology", 1951, v. 23, No 4; General systems. Yearbook of the society for general systems research, v. 1–13–, Ann Arbor, 1956–68–; Mathematical systems theory, v. 1–4–, N. Y., 1965–68–; IEEE transactions on systems science and cybernetics, v. 1–, 1965–; Bertalanffy L. von, General system theory. Foundations, development, applications, N. Y., 1968; Systems theory and biology, ed. M. Mesarovic, N. Y., 1968; Unity and diversity of systems, ed. R. D. S. Jones, N. Y., 1969.

В. Садовский, Э. Юдин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

СИСТЕМА

СИСТЕМА (от греч. σύστεμα - целое, составленное из частей, соединение) - совокупность элементов, находящихся в отношениях и связях друг с другом, которая образует определенную целостность, единство. Претерпев длительную историческую эволюцию, понятие “система” с сер. 20 в. становится одним из ключевых философско-методологических и специально-научных понятий. В современном научном и техническом знании разработка проблематики, связанной с исследованием и конструированием систем разного рода, проводится в рамках системного подхода, общей теории систем, различных специальных теорий систем, системном анализе, в кибернетике, системотехнике, синергетике, теории катастроф, термодинамике неравновесных систем и т. п.

Первые представления о системе возникли в античной философии, выдвинувшей онтологическое истолкование системы как упорядоченности и целостности бытия. В древнегреческой философии и науке (Платон , Аристотель, стоики, Евклид) разрабатывалась идея системности знания (целостность знания, аксиоматическое построение логики, геометрии). Воспринятые от античности представления о системности бытия развивались как в системно-онтологических концепциях Спинозы и Лейбница, так и в построениях научной систематики 17-18 вв., стремившейся к естественной (а не телеологической) интерпретации системности мира (напр., классификация К. Линнея). В философии и науке Нового времени понятие системы использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк - от отрицания системного характера научно-теоретического знания (Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И. Г. Ламберт и др.).

Принципы системной природы знания разрабатывались в немецкой классической философии: согласно Канту, научное знание есть система, в которой целое главенствует над частями; Шеллинг и Гегель трактовали системность познания как важнейшее требование теоретического мышления. В западной философии 2-й пол. 19-20 в. содержатся постановки, а в отдельных случаях и решения некоторых проблем системного исследования: специфики теоретического знания как системы (неокантиантво), особенностей целого (холизм , гештальтпсихология), методы построения логических и формализованных систем (неопозитивизм). Определенный вклад в разработку философских и методологических оснований исследования систем внесла .

Для начавшегося со 2-й пол. 19 в. проникновения понятия системы в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч. Дарвина, теории относительности, квантовой физики, позднее - структурной лингвистики. Возникла задача построения строгого определения понятия системы и разработки оперативных методов анализа систем. Бесспорный приоритет в этом отношении принадлежит разработанной А. А. Богдановым в нач. 20 в. концепции тектологаи - всеобщей организационной науки. Эта теория в то время не получила достойного признания и только во 2-й пол. 20 в. значение тектологаи Богданова было адекватно оценено. Некоторые конкретно-научные принципы анализа систем были сформулированы в 1930-40-х гг. в работах В. И. Вернадского, в праксеологии Т. Котарбиньского. Предложенная в конце 1940-х гг. Л. Берталанфи программа построения “общей теории систем” явилась одной из попыток обобщенного анализа системной проблематики. Именно эта программа системных исследований получила наибольшую известность в мировом научном сообществе 2-й пол. 20 в. и с ее развитием и модификацией во многом связано возникшее в это время системное движение в науке и технических дисциплинах. Дополнительно к этой программе в 1950-60-х гг. был выдвинут ряд общесистемных концепций и определений понятия системы - в рамках кибернетики, системного подхода, системного анализа, системотехники, теории необратимых процессов и т. п.

При определении понятия системы необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие системы имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как система), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений - как содержательных, так и формальных. Лишь в рамках такого семейства определений удается выразить основные системные принципы: целостности (принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения системы от его места, функций и т. д. внутри целого); структурности (возможность описания системы через установление ее структуры, т. e. сети связей и отношений; обусловленность поведения системы не столько поведением ее отдельных элементов, сколько свойствами ее структуры); взаимозависимости системы и среды (система формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия); иерархичности (каждый компонент системы, в свою очередь, может рассматриваться как система, а исследуемая в данном случае система представляет собой один из компонентов более широкой системы); множественности описания каждой системы(в силу принципиальной сложности каждой системы ее адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы) и др.

Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой, во взаимодействии с которой система проявляет свою целостность. Иерархичность присуща не только строению, морфологии системы, но и ее поведению: отдельные уровни системы обусловливают определенные аспекты ее поведения, а целостное функционирование оказывается результатом взаимодействия всех ее сторон и уровней. Важной особенностью систем, особенно живых, технических и социальных, является передача в них информации; существенную роль в них играют процессы управления. К наиболее сложным видам систем относятся целенаправленные системы, поведение которых подчинено достижению определенных целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру. Для многих сложных живых и социальных систем характерно наличие разных по уровню, часто не согласующихся между собой целей.

Существенным аспектом раскрытия содержания понятия системы является выделение различных типов систем. В наиболее общем плане системы можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на системы неорганичной природы (физические, геологические, химические и др.) и живые системы, куда входят как простейшие биологические системы, так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых систем образуют социальные системы, многообразные по типам и формам (от простейших социальных объединений до социально-экономической структуры общества). Абстрактные системы являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые системы представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т. д.). К числу абстрактных систем относятся и научные знания о системах разного типа, как они формулируются в общей теории систем, специальных теориях систем и др. В науке 20 в. большое внимание уделяется исследованию языка как системы (лингвистическая система); в результате обобщения этих исследований возникла общая теория знаков - семиотика. Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных систем (металогика , математика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике, информатике и др.

При использовании других оснований классификации систем выделяются статичные и динамичные системы. Для статичной системы характерно, что ее состояние с течением времени остается постоянным (напр., газ в ограниченном объеме - в состоянии равновесия). Динамичная система изменяет свое состояние во времени (напр., живой организм). Если знание значений переменных системы в данный момент времени позволяет установить состояние системы в любой последующий или любой предшествующий моменты времени, то такая система является однозначно детерминированной. Для вероятностной (стохастической) системы знание значений переменных в данный момент времени позволяет предсказать вероятность распределения значений этих переменных в пос

ледующие моменты времени. По характеру взаимоотношений системы и среды системы делятся на закрытые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые (постоянно происходит ввод и не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая система в конечном счете достигает состояния равновесия, при котором остаются неизменными все макроскопические величины системы и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой системы является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но продолжаются макроскопичные процессы ввода и вывода вещества.

Основная задача специализированных теорий систем - построение конкретно-научного знания о разных типах и разных аспектах систем, в то время как главные проблемы общей теории систем концентрируются вокруг логико-методологических принципов анализа систем, построения метатеории системных исследований.


Человек всегда пытался понять устройство мироздания и выявить те связи, которые существуют в мире.

Из чего мир состоит? Что удерживает его в таком состоянии? Является ли мир случайным, хаотичным

набором свойств и явлений или представляет собой некоторое упорядоченное целое? Перед нами вновь крут вопросов, которые являются «вечными», предельными, а посему относящимися к предмету философии. Отвечая на эти вопросы, в философии были развиты два основных направления их решения. Одно из них было связано с тем, что любой предмет, объект или явление рассматривались как представляющие собой сумму составляющих их частей. Предполагалось, что сумма частей и составляет качество целого предмета. Другая позиция исходила из того, что любой объект имеет некоторые внутренние неотъемлемые качества, которые остаются в нем даже при отделении частей.

Таким образом, решая проблему возможности существования объекта (от самого простого до самого

сложного, включая мир в целом, бытие в целом), философия оперировала понятиями «часть» и «целое».

Данные понятия немыслимы друг без друга. Целое всегда состоит из некоторых частей, а часть всегда

является единицей какого-то целого. Тесная взаимосвязь данных понятий и породила вытекающие из нее возможные варианты соотношения части и целого, которые мы привели выше. Причем, если сведение свойства целого к сумме частей лежало на поверхности, было легко представимо, то противоположная позиция о наличии некоторого внутреннего свойства целостности как таковой представлялась менее наглядной и более сложной. В некотором смысле последнее представляло собой некоторую загадку для разума, т. к. мыслилось некое свойство, которого не было в частях, а значит, оно появлялось как бы ниоткуда. В истории философии данные альтернативные позиции известны под названиями меризм (от греческого слова, означающего часть) и холизм (от греческого слова, означающего целое). Следует еще раз подчеркнуть, что обе концепции были тесно взаимосвязаны,

обращали внимание на слабости противоположных сторон и абсолютизировали собственную позицию. Поэтому аргументы, которые выдвигались сторонниками этих концепций, как правило, основывались на

неоспоримых фактах, а то, что выходило за эти рамки, просто игнорировалось. В результате сформировалась группа, на первый взгляд взаимоотрицающих друга положений, которые сами по себе были логически обоснованы, что позволяет их называть антиномиями целостности23. Меризм исходит из того, что поскольку часть предшествует целому, то совокупность частей не порождает качественно ничего нового, кроме количественной совокупности качеств. Целое здесь детерминируется частями. Поэтому познание объекта есть прежде всего его расчленение на более мелкие части, которые познаются относительно автономно. А уж затем из знаний этих частей складывается общее представление об объекте. Такой подход к исследованию объекта получил в науке название элементаристского, основанного на методе редукции (сведения) сложного к простому. Сам по себе этот подход работает очень эффективно, пока речь идет об относительно простых объектах, части которых слабо взаимосвязаны между собой. Как только в качестве объекта выступает целостная система типа организма или общества, то сразу сказываются слабости такого подхода. Например, никому еще не удалось объяснить специфику общественного развития путем его редукции к историческим личностям

(элементарным частицам общества). Холизм исходит из того, что качество целого всегда превосходит сумму качеств его частей. Т. е. в целом как бы присутствует некий остаток, который существует вне качеств частей, может быть даже до них. Это качество целого как такового обеспечивает связанность предмета и влияет на качества отдельных частей. Соответственно, познание реализуется как процесс познания частей на основании знания о целом. Такой подход при всей его внешней привлекательности также часто оказывался ошибочным, т. к. приводил к мыслительному конструированию указанного «остатка», который и выступал в качестве главной детерминанты системы. Но сам этот остаток часто

оставался неопределенным, что приводило к спекулятивным объяснениям реальных процессов.

Антиномичность данных подходов, их взаимная аргументированность заставляла задуматься о более

тесной и сложной взаимосвязи между частью и целым, что постепенно привело к диалектическому пониманию данной проблемы и к тому, что обе позиции (и меризм, и холизм) в определенной степени и в определенных пределах дополняют друг друга, отражая разные уровни целостности объекта.

Действительно, развитие физики, например, долгое время шло в русле редукционистской методологии, что было весьма эффективно и позволило человеку построить стройную физическую картину мира. Однако, как только физика проникла на уровень элементарных частиц, оказалось, что законы физики здесь совершенно иные и отличаются от статистической физики. Отличие было в том, что неопределенность классической физики объяснялась отсутствием знания о движении элементарных частиц. А в квантовой механике соотношение неопределенностей выступает в качестве основы физических представлений, исходящих «из принципиальной невозможности установить одновременно и местоположение и скорость частицы»24. Особенно эффективно проявился антиредукционистский подход в социальных науках и биологии, в которых исследуемые объекты носят целостный характер. Так, например, генетикам удалось установить связь между анатомическими, физиологическими характеристиками организма и биологическими элементарными частицами - генами. Ясно, что идя по пути только редукции анатомических или биологических свойств, идея взаимосвязи их между собой и генами была бы просто не найдена. Интуитивно самими учеными это всегда ощущалось, внешняя непримиримость позиций преодолевалась, и они дополняли друг друга. Бихевиорист (как пример холистической установки), с одной стороны, выступает как редукционист, т. к. «пытается свести сложные формы поведения к схеме «стимул- реакция». С другой стороны, он отказывается от дальнейшего анализа элементов этой схемы, например, от разложения реакций на нервные процессы, т. е. выступает как холист. Для бихевиориста нервная система - «черный ящик», в который он не хочет

заглянуть»25. Таким образом, критика с холистских позиций не давала ученым до предела упрощать теорию, а редукционистская позиция выступала просто как средство научного наполнения той или иной спекулятивной концепции.

Таким образом, два эти внешне противоположных подхода можно совместить в едином диалектическом

понимании соотношения части и целого. В диалектике вырабатывается принцип целостности, основанный на понимании того, что в целом существует взаимосвязь между частями, которая сама по себе обладает различными свойствами, в частности, способностью осуществлять эту связь. Стало понятным, что на основе взаимодействия частей могут возникать такие целостности, где важную роль играют сами взаимосвязи. Долгое время диалектика части и целого присутствовала лишь в философии на уровне рефлексивно- логических умозаключений, часто не связанных с конкретным материалом. Это объясняется тем, что такое диалектическое понимание было не востребовано науками, которые в основном находились на эмпирической стадии развития, внутри которого шел процесс накоплени эмпирического материала и различного рода его классификации. Соответственно, в данный момент преобладали идеи элементаризма и механицизма, которые распространялись в виде соответствующих частнонаучных методов на познание любых явлений от механики до исследования человека и социума. Такая ситуация сохранялась вплоть до XIX века, когда накопленные знания стали столь велики и разнообразны, что понадобилось их целостное объяснение. Возникают концепции, которые пытаются

связать в единые системы самые разнообразные знания, как в одной, так и в нескольких отраслях науки. В философии это в наибольшей степени осуществили Гегель, применительно к обществу К. Маркс и М. Вебер, в естествознании Ч. Дарвин, А. Эйнштейн. Однако в явном виде, именно как принцип системности данную позицию сформулировал в 1950-е гг. Л. Берталанфи, когда столкнулся с решением некоторых проблем биологии, требовавших создания общей теории систем, а еще раньше, в 1920-е гг., А. Богданов при разработке своей тектологии26, в которой он обосновывает необходимость исследования любого объекта с «организационной точки зрения». С этой позиции законы организации системы могут носить всеобщий характер и проявляться в самых разнообразных конкретных системах.

Это привело к становлению системного подхода в качестве общенаучного метода. Системный метод в

итоге не подменяет собой философские размышления о диалектике части и целого, а представляет собой

особого рода принцип общенаучного и междисциплинарного уровня, который не решает мировоззренческих или онтологических предельных философских вопросов, но, одновременно, и не является конкретно-научной методологией. Результатом системного подхода выступает создание общенаучных методологических концепций, разработка которых осуществляется «в сфере не-философского знания, главным образом в рамках современной логики и методологии науки»27.

Системный подход не отменяет, таким образом, философского принципа системности, а, напротив,

закрепляет его в качестве важнейшего принципа диалектического объяснения бытия, уточняя проблему части и целого в несколько иных понятиях и представлениях, связанных с определением системы как таковой. Если системный подход как общенаучный метод опирается на знания систем реальной действительности, то философский принцип системности преломляет проблему части и целого (в том числе и ее решения системным подходом) сквозь призму предельного философского отношения к миру, т. е. сквозь призму онтологических, гносеологических, методологических и мировоззренческих проблем. В то же время сама ориентация на исследование бытия как совокупности самых разнообразных систем дополняет философскую рефлексию уточненными понятиями и представлениями, которые являются весьма эффективными и внутри философского подхода к миру, иногда более эффективными, чем представления о соотношении части и целого. Диалектика части и целого, исторически разрабатываемая в философии, таким образом, стимулировала развитие сходных методов в науках, а знания, полученные в науках о конкретных системах, позволили значительно уточнить данную философскую проблематику через интерпретацию проблемы части и целого в терминах системного подхода. Таким образом, принцип системности связан с тем, что исследуя различные объекты, мы должны подходить к ним как к системе. Это означает прежде всего выявление в них элементов и связей, которые между ними существуют. При этом, изучая элемент, мы должны выделять прежде всего те его свойства, которые связаны с его функционированием в данной системе. Ведь сам по себе, как отдельный объект, он может обладать неограниченным числом свойств. В системе он проявляется как бы своей одной стороной. Поэтому некоторые объекты могут быть элементами разных систем, включаться в разные взаимосвязи. Важнейшим свойством объекта выступает его структура, которая, с одной стороны, связывает его в единое целое, а с другой, заставляет элементы функционировать по законам данной системы. Если человек как элемент включен, например, в партийную или иную общественную систему, то здесь на первый план выступает не вся совокупность его личностных свойств, а прежде всего то, что позволяет ему активно функционировать в качестве элемента данной системы. И все иные его личностные свойства будут затребованы лишь в той степени, насколько они способствуют данному

функционированию, обеспечивая устойчивость и функционирование всей системы в целом. В противном случае, если человек как элемент общественной системы нарушает ее нормальное функционирование, то он будет ею отторгнут или будет вынужден отказаться от проявления некоторых собственных качеств, мешающих данному функционированию. Особенность системного принципа заключается в том, что, исследуя с его помощью явления, мы исходим из целостности объекта. В философском смысле это позволяет нам рассматривать бытие тоже как особого рода систему. Это означает, что мы можем выделять в нем различные уровни и подуровни, выявлять самые разнообразнысистемы связей, т. е. разные структуры, рассматривая эти структурные связи как особого

рода закономерности, которые можно познавать. Причем оказывается, что на таком предельном уровне

исследования бытия, грани противопоставляющие, например идеализм и материализм, стираются, или, точнее, взаимодополняют друг друга, представляя собой лишь различные интерпретации данной проблемы. И та, и другая позиция способны объяснить мир, и та, и другая - относительно недостаточны. Бытие определенным образом упорядочено, причем наличие бесконечного числа структурных уровней позволяет делать вывод о его структурной бесконечности. Оно представляет

собой разнообразие структур, разных целостных систем, которые в свою очередь взаимосвязаны между собой в рамках более общей системы. Структурность бытия проявляется в том числе в существовании различных форм материальных систем, которые имеют свои специфические связи. Так, например, материя может существовать в виде вещества и поля. Вещество - это различные частицы и тела, которым присуща масса покоя (элементарные частицы, атомы, молекулы). Поле - это вид материи,

который связывает тела между собой. Частицы поля не имеют массы покоя: свет не может покоиться.

Поэтому поле непрерывно распределено в пространстве. Выделяют следующие поля: ядерное,

электромагнитное и гравитационное. Если мы исследуем структуру вещества, то обнаружим, что внутреннее его пространство как бы занято полями. Это фактически система «вещество-поле», и в общем объеме данной системы на долю частиц вещества приходится меньшая часть ее объема. Соответственно, применяя принцип системности к материальному устройству мира, т. е. выделяя в нем

устойчивые связи и взаимодействия, можно выделить следующие уровни его материальной организации. Неорганическая природа представляет собой движение элементарных частиц и полей, атомов и молекул, макроскопических тел, планетарные изменения. Можно по ступеням от более простого к более сложному выделить следующие последовательные структурные уровни в ней: субмикроэлементарный - микроэлементарный - ядерный - атомный - молекулярный - макроуровень - мегауровень (планеты, галактики, метагалактики и т. д.).

Живая природа - это различного рода биологические процессы. Она включена в неживую природу, но

начинается как бы с иного ее уровня. Если в неживой природе нижней ступенью является субмикроэлементарный уровень, то здесь - молекулярный. Элементарные частицы имеют размеры 10~14 см, а молекулы - Ю-7. Соответственно, последовательные уровни выглядят следующим образом: молекулярный - клеточный - микроорганизменный - тканевый - организменно-популяционный - биоценозный - биосферный. Следовательно, «на уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений; на уровне экосистемы (биоценоза) он состоит из цепи превращения веществ, первоначально ассимилированных

организмами-производителями при посредстве организмов-потребителей и организмов-разрушителей,

относящихся к разным видам; на уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участии факторов космического масштаба»28. В социуме мы также можем выделить уровни: индивидуум - семья - коллектив - класс - нация - государство - этнос - человечество в целом. Однако здесь последовательность их соподчинения несколько иная, и они находятся «в неоднозначно-линейных связях между собой», что порождает представление о господстве случайности и хаотичности в обществе. «Но внимательный анализ обнаруживает наличие в нем фундаментальной структурности - главных сфер общественной жизни, каковыми являются материально- производственная, социальная, политическая и духовные сферы, имеющие свои законы и свои структуры»29. Таким образом, материальный мир (ограниченный доступными на сегодняшний день пространственно- временными масштабами) включает в себя в качестве подсистем и живую природу, и социум, которые начинаются на иных пространственно-временных масштабах и приобретают специфические свойства относительно предшествующих уровней. Все это вместе является единой системой с различными структурными уровнями. Следовательно, познание этих структурных уровней осуществляется как познание соответствующих закономерностей, которые неисчерпаемы как внутри каждого уровня, так и в целом (структурная неисчерпаемость), но ограничены нашими научно-техническими возможностями. Типология реальных природных систем может осуществляться и по характеру связи между элементами30. В этом случае выделяются следующие виды систем. Суммативные - это системы, в которых элементы достаточно автономны по отношению друг к другу, а связь между ними носит случайный, преходящий характер. Иначе говоря, свойство системности здесь, безусловно, имеется, но выражено очень слабо и не оказывает существенного влияния на данный объект. Свойства такой системы почти равны сумме свойств ее элементов. Это такие неорганизованные

совокупности, как, например, горсть земли, корзина яблок и т. д. В то же время при некоторых условиях связь этих суммативных систем может укрепляться, и они способны перейти на иной уровень системной организации.

Целостные системы - характеризуются тем, что здесь внутренние связи элементов дают такое системное качество, которого не существует ни у одного из входящих в систему элементов. Существуют и иные возможности типологии, например, по формам движения материи или по характеру внутренней детерминации. Существуют идеальные системы и т.д. принцип системности применяется именно к целостным системам. Среди целостных систем по характеру взаимодействия в них элементов можно выделить следующие. Неорганические системы (атомы, молекулы, Солнечная система), в которых могут быть разные варианты соотношения части и целого и взаимодействие элементов в которых осуществляется под воздействием внешних сил. Одни элементы такой системы могут как бы терять ряд свойств вне системы, а другие, наоборот, могут выступать как самостоятельные. Целостность таких систем определяется законом сохранения энергии. Система является тем более устойчивой, чем больше усилий надо приложить для «растаскивания» ее на отдельные элементы. В некоторых случаях, когда речь идет об элементарных системах, энергия такого растаскивания (распада) может быть сопоставима с энергией самих частиц. Внутри неорганических систем, в свою очередь, можно выделить системы функциональные и нефункциональные. Функциональная система основана на принципе сосуществования относительно самостоятельных частей. К данному типу систем можно отнести различного рода машины, в которых, с одной стороны, изъятие или поломка одной из частей может привести к сбою всей системы в целом. А с другой, относительная автономность частей позволяет улучшать функционирование системы за счет замены отдельных частей, блоков или путем введения новых программ. Это создает возможности настолько высокой степени заменяемости частей системы, что является условием повышения степени надежности и оптимизации ее работы, а на определенном уровне может привести к изменению качественного состояния системы. Последнее характерно для компьютерной техники, функционирование которой можно улучшать без остановки работы всей системы в целом. Органические системы характеризуются большей активностью целого по отношению к частям. Такие системы способны к саморазвитию и самовоспроизведению, а некоторые и к самостоятельному существованию. Высокоорганизованные среди них могут создавать свои подсистемы, которых не было в природе. Части таких систем существуют только внутри целого,

а без него перестают функционировать. Таким образом, подводя итог, можно сказать, что принцип системности означает такой подход к исследованию объекта, когда последний рассматривается в

качестве целостной системы, когда он исследуется через выделение элементов и взаимосвязей между

ними, когда каждый исследуемый объект рассматривается в качестве элемента более общих систем, при

этом выделяются системы причинных связей и следствий, и любое явление рассматривается как следствие системы причин, а исследование элементов происходит с позиции выявления их места и функций в системе. Поскольку один и тот же элемент обладает множеством свойств, то он может функционировать в разных системах. При исследовании высокоорганизованных систем необходимо понимать, что содержательно система богаче любого элемента, поэтому только причинного объяснения недостаточно.

Системно-структурный подход в познаниипредполагает изучение только организации, устройства некоего объекта или процесса, без обращения к составляющей его материи, не воспроизводя его бытия полностью. Таким путем мысль ученого различает самые важные характеристики реальности, которые выражены в следующих понятиях:

система - такое объединение нескольких предметов, явлений, благодаря которому они получают новое, дополнительное качество, не сводимое ни к каждому из них по отдельности, ни к их механической сумме;

элемент - такая часть системы, без которой она не может существовать как таковая, объединение ее частей лишается системного качества;

структура - порядок (закон) связи элементов в системе, их пространственный и временной порядок расположения и существования;

функция - направление воздействия системы на другие системы, их соотношения друг с другом.

Структурализм(Франция) как особое направление философии и науки получил за вторую половину XX века широкое применение в целом ряде дисциплин, особенно лингвистике, литературоведении, этнографии. Представители этого направления оставляют без внимания элементы изучаемых наукой и преобразуемых практикой систем. Эти элементы бесконечно разные и свести их к общему знаменателю бывает проблематично. Структуралисты же обращают внимание на устойчивые структуры, благодаря которым организуются в системы и живут, функционируют самые разные явления природы, жизни и культуры - химические соединения, биоценозы, произведения искусства, конструкции языка, научные идеи, политические идеологии. При таком подходе синхрония (изучение сходства одновременно существующих феноменов) преобладает над диахронией (изучением последовательной смены явлений внутри некоего процесса).

Одним из основателей структурализма и в философской теории, и в конкретно-научной практике выступил французский антрополог Клод Леви-Строс (1908 г. р.). В его исследованиях мифов и ритуалов разных первобытных народов выявлена общая структура мифологического мышления (хотя эти народы никогда и никак не контактировали между собой). Одним из принципов этой структуры выступает бинарная оппозиция - когда две стороны одного целого одновременно и предполагают, дополняют, и отрицают, вытесняют друг друга (что похоже на диалектическое противоречие в духе Гегеля и Маркса).

Француз Ролан Барт (1915–1980) и итальянец Умберто Эко распространили структурализм на литературоведение и семиотику. Они предложили понимать любые явления культуры как разновидности текстов, письма, т.е. определённые системы знаков. При этом структурами можно считать не любые последовательности знаков, а лишь такие, с помощью которых определяется качественный облик явления. Так, красный цвет сам по себе не выражает запрета. Эту функцию он приобретает лишь в связи с зелёным и желтым цветами светофора. Точное описание элементов и структур природы, общества, культуры открывает новые горизонты их познании.

Системность

Аналогично пространству, времени, движению системность является всеобщим, неотъемлемым свойством материи, её атрибутом. Будучи отличительной чертой материальной действительности, системность определяет важность в мире организованности над хаотичными изменениями. Последние не изолированы резко от оформленных образований, но включены в них и подчиняются в конечном счете действию гравитационных, электромагнитных и других материальных сил, действию общих и частных законов. Неоформленность изменений в одном каком-либо отношении оказывается упорядоченностью в другом. Организованность характерна материи в любых ее пространственно-временных масштабах.

В последнее десятилетие в связи с изменением представлений астрофизики о галактиках и их отношениях с окружением стал активно обсуждаться вопрос о крупномасштабной структуре Вселенной. Было выдвинуто предположение, что «единственное и наиболее важное» утверждение, которое касается крупномасштабной структуры Вселенной, заключается в том, что в наибольших масштабах вообще нет какой-либо структуры. С другой же стороны, в меньших масштабах имеется большое разнообразие структур. Это скопления и сверхскопления галактик. Такая идея имеет некоторые противоречия. Быть может, требуется уточнить понятия, и прежде всего понятие структуры. Если иметь в виду только некоторые структуры макромира или микромира, то, возможно, мегамир и «бесструктурен». Структурность -- это внутренняя раздробленность материального бытия. И как бы не был широк диапазон мировидения науки, он постоянно связан с обнаружением все новых и новых структурных образований. Если раньше взгляд на Вселенную замыкался галактикой, а потом расширился до системы галактик, то сейчас изучается Метагалактика, считающаяся особой системой со специфическими законами, внешними и внутренними взаимодействиями. Представление о структурности шагнуло до масштабов, достигающих до 20 миллиардов световых лет. Речь идет не о спекулятивно сконструированной структурности (как, например, в случае с гипотезой «бесструктурной Вселенной»), а о системности Вселенной, которая установлена средствами современной астрофизики. Самые общие соображения указывают на необоснованность этой гипотезы: если большее лишено структурности, то нельзя принимать структурность меньшего. Следствием должно быть согласие и об отсутствии структуры части той же Вселенной, чего пытается избежать данная гипотеза . Возможна также различная степень структурированности каких-то масштабов и сфер Вселенной и принятие за «бесструктурность» слабо выраженной структурности относительно высокоразвитых структурных образований. Философские соображения и частнонаучные данные говорят в пользу положения о том, что в целом неорганическая природа является самоорганизующей системой, состоящей из взаимосвязанных и развивающихся систем различного уровня организации, не имеющая начала и конца.

Структурно и в масштабах микромира материя бесконечна. Сегодня все больше подтверждений получает квартовая модель структуры адронов, что ведёт к преодолению представления о бесструктурности элементарных частиц (протонов, нейтронов, гиперонов и др.). Это вовсе не значит, что структурную бесконечность материи необходимо понимать как бесконечную делимость вещества. Современная физика подошла к такому рубежу, когда вопрос возможно трактовать по-новому. Например, Академик М.А. Марков отмечает трудность, которая связана с дальнейшей экстраполяцией понятия «состоит из...» на микромир. Если частицу малой массы, пишет он, поместить в пространство с очень малым объемом, то, по соотношению неточностей Гейзенберга, ее кинетическая энергия будет увеличиваться с уменьшением этой области таким образом, что с неограниченным уменьшением этого пространства кинетическая энергия частицы, а значит и ее полная масса будут стремиться к бесконечности. Таким образом, оказывается, невозможным построить бесконечно «мелкую» структуру данного объекта данной массы, пытаясь строить его механически из частиц меньших масс, которые занимают все меньшие объемы в структуре данного объема. Возникла идея строить частицы из более фундаментальных частиц, обладающих большими массами. Уменьшение массы результирующей системы возникает за счет сильного взаимодействия тяжелых частиц, составляющих систему. Материя во всех своих масштабах обладает формообразующей активностью. Бесструктурной материи нет.

Но что представляет собой система? Из всего многообразия выделим основное определение, которое считается наиболее корректным и наиболее простым, что немаловажно в целях дальнейшего изучения указанного понятия. Таковым может быть определение, данное одним из основоположников общей теории систем Л. Берталанфи: система -- это комплекс взаимодействующих элементов .

В понимании того, что же такое система, главную роль играет значение слова «элемент». Без этого само определение может считаться банальным, не заключающем в себе значительной эвристической ценности. Критериальное свойство элемента сводится к его необходимому и непосредственному участию в создании системы: без него, т. е. без какого-либо одного элемента, система не может существовать. Элемент есть далее неразложимый компонент системы при данном способе ее рассмотрений. Если, например, взять человеческий организм, то отдельные клетки, молекулы или атомы не будут выступать его элементами; ими окажутся пищеварительная система, кровеносная и нервная системы и т.д. (по отношению к системе «организм» точнее будет назвать их подсистемами). Что же касается отдельных внутриклеточных образований, то они могут считаться подсистемами клеток, но никак не организма; по отношению к системе «организм» они являются компонентом его содержания, но не элементом и не подсистемой.

Понятие «подсистема» было выработано для анализа саморазвивающихся, сложноорганизованных, систем, когда между системой и элементами существуют более сложные, чем элементы «промежуточные» комплексы, но менее сложные, чем сама система. Они соединяют в себе различные части, элементы системы, которые в своей совокупности способны к выполнению единой программы системы. Являясь элементом системы, подсистема в свою очередь оказывается системой по отношению к элементам, ее составляющим. Точно так же обстоит дело с отношениями между понятиями «система» и «элемент»: они переходят друг в друга. Иначе говоря, система и элемент относительны. С этой точки зрения вся материя представляется как бесконечная система систем. «Системами» могут быть системы отношений, детерминаций и т.п. Наравне с представлением об элементах в представление, о всякой системе входит и представление о ее структуре. Структура -- это совокупность устойчивых отношений и связей между элементами. Сюда можно отнести общую организацию элементов, их пространственное расположение, связи между этапами развития и т.п. .

По своей значимости для системы связи элементов неодинаковы: одни малосущественны, остальные существенны, закономерны. Структура -- это прежде всего закономерные связи элементов. Среди закономерных наиболее значимыми считаются интегрирующие связи (или интегрирующие структуры), обусловлавливающие интегрированность сторон объекта. В системе производственных отношений, например, существуют связи трех родов: относящиеся к формам собственности, к распределению и к обмену деятельностью.

Все они закономерны и существенны, несмотря на то, что интегрирующую роль в этих отношениях играют отношения собственности (иначе формы собственности). Интегрирующая структура представляет собой ведущую основу системы.

Возникает вопрос -- чем можно определить качество системы -- структурами или элементами? По мнению некоторых философов, качество системы детерминируется, прежде всего структурой, отношениями, связями внутри системы. Представители школы структурно-функционального анализа, во главе с Т. Парсонсом, положили в основу концепции общества «социальные действия» и заострили внимание на функциональных связях, их описании, выявлении структурных феноменов. При этом вне поля зрения остались причинные зависимости и субстратные элементы. В области лингвистики также возможно встретить направление, абсолютизирующее роль структуры в генезисе качества систем.

Для целей исследования бывает, возможно, и нужно на какое-то время абстрагироваться от материальных элементов, сосредоточиться на анализе структур. Однако одно дело -- временное отвлечение от материального субстрата, а совсем другое -- абсолютизация этой односторонности, построение на таком отвлечении целостного мировоззрения.

С помощью научно-философского подхода можно выявить зависимость систем от структур. Пример тому служит явление изомерии в химии. В пользу выдвинутого положения говорит и относительная независимость структур от природы их субстратных носителей (так, электронные импульсы, нейтроны и математические символы способны являться носителями одной и той же структуры). На использовании свойства одинаковости структур, или изоморфизма, основывается один из главных методов современной науки -- метод кибернетического моделирования.

Но как бы актуальна ни была роль структуры в обуславливании природы системы, первое значение принадлежит все-таки элементам. Под этим следует подразумевать невозможность порождения той или иной совокупностью элементов, которые вступают во взаимодействие. Элементы описывают сам характер связи внутри системы. То есть, природа и количество элементов обусловливают способ их взаимосвязи. Одни элементы детерминируют одну структуру, другие -- другую. Элементы -- материальный носитель отношений и связей, они и составляют структуру системы . Таким образом, качество системы определяется, во-первых, элементами (их свойствами, природой, количеством) и, во-вторых, структурой, т. е. их взаимодействием, связью. Нет и не может быть «чистых» структур в материальных системах, как не может быть и «чистых» элементов. С этой точки зрения структурализм как мировоззрение есть одностороннее, и поэтому ошибочное видение мира.

СИСТЕМА (от греч. σύστεμα – целое, составленное из частей, соединение) – совокупность элементов, находящихся в отношениях и связях друг с другом, которая образует определенную целостность, единство. Претерпев длительную историческую эволюцию, понятие «система» с сер. 20 в. становится одним из ключевых философско-методологических и специально-научных понятий. В современном научном и техническом знании разработка проблематики, связанной с исследованием и конструированием систем разного рода, проводится в рамках системного подхода , общей теории систем , различных специальных теорий систем, системном анализе , в кибернетике, системотехнике, синергетике , теории катастроф, термодинамике неравновесных систем и т.п.

Первые представления о системе возникли в античной философии, выдвинувшей онтологическое истолкование системы как упорядоченности и целостности бытия. В древнегреческой философии и науке (Платон, Аристотель, стоики, Евклид) разрабатывалась идея системности знания (целостность знания, аксиоматическое построение логики, геометрии). Воспринятые от античности представления о системности бытия развивались как в системно-онтологических концепциях Спинозы и Лейбница, так и в построениях научной систематики 17–18 вв., стремившейся к естественной (а не телеологической) интерпретации системности мира (напр., классификация К.Линнея). В философии и науке Нового времени понятие системы использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк – от отрицания системного характера научно-теоретического знания (Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И.Г.Ламберт и др.).

Принципы системной природы знания разрабатывались в немецкой классической философии: согласно Канту, научное знание есть система, в которой целое главенствует над частями; Шеллинг и Гегель трактовали системность познания как важнейшее требование теоретического мышления. В западной философии 2-й пол. 19–20 в. содержатся постановки, а в отдельных случаях и решения некоторых проблем системного исследования: специфики теоретического знания как системы (неокантиантво), особенностей целого (холизм, гештальтпсихология), методы построения логических и формализованных систем (неопозитивизм). Определенный вклад в разработку философских и методологических оснований исследования систем внесла марксистская философия.

Для начавшегося со 2-й пол. 19 в. проникновения понятия системы в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч.Дарвина, теории относительности, квантовой физики, позднее – структурной лингвистики. Возникла задача построения строгого определения понятия системы и разработки оперативных методов анализа систем. Бесспорный приоритет в этом отношении принадлежит разработанной А.А.Богдановым в нач. 20 в. концепции тектологии всеобщей организационной науки. Эта теория в то время не получила достойного признания и только во 2-й пол. 20 в. значение тектологии Богданова было адекватно оценено. Некоторые конкретно-научные принципы анализа систем были сформулированы в 1930–40-х гг. в работах В.И.Вернадского, в праксеологии Т.Котарбиньского. Предложенная в конце 1940-х гг. Л.Берталанфи программа построения «общей теории систем» явилась одной из попыток обобщенного анализа системной проблематики. Именно эта программа системных исследований получила наибольшую известность в мировом научном сообществе 2-й пол. 20 в. и с ее развитием и модификацией во многом связано возникшее в это время системное движение в науке и технических дисциплинах. Дополнительно к этой программе в 1950–60-х гг. был выдвинут ряд общесистемных концепций и определений понятия системы – в рамках кибернетики, системного подхода, системного анализа, системотехники, теории необратимых процессов и т.п.

При определении понятия системы необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие системы имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как система), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений – как содержательных, так и формальных. Лишь в рамках такого семейства определений удается выразить основные системные принципы: целостности (принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения системы от его места, функций и т.д. внутри целого); структурности (возможность описания системы через установление ее структуры, т.е. сети связей и отношений; обусловленность поведения системы не столько поведением ее отдельных элементов, сколько свойствами ее структуры); взаимозависимости системы и среды (система формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия); иерархичности (каждый компонент системы, в свою очередь, может рассматриваться как система, а исследуемая в данном случае система представляет собой один из компонентов более широкой системы); множественности описания каждой системы(в силу принципиальной сложности каждой системы ее адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы) и др.

Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой, во взаимодействии с которой система проявляет свою целостность. Иерархичность присуща не только строению, морфологии системы, но и ее поведению: отдельные уровни системы обусловливают определенные аспекты ее поведения, а целостное функционирование оказывается результатом взаимодействия всех ее сторон и уровней. Важной особенностью систем, особенно живых, технических и социальных, является передача в них информации; существенную роль в них играют процессы управления. К наиболее сложным видам систем относятся целенаправленные системы, поведение которых подчинено достижению определенных целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру. Для многих сложных живых и социальных систем характерно наличие разных по уровню, часто не согласующихся между собой целей.

Существенным аспектом раскрытия содержания понятия системы является выделение различных типов систем. В наиболее общем плане системы можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на системы неорганичной природы (физические, геологические, химические и др.) и живые системы, куда входят как простейшие биологические системы, так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых систем образуют социальные системы, многообразные по типам и формам (от простейших социальных объединений до социально-экономической структуры общества). Абстрактные системы являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые системы представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т.д.). К числу абстрактных систем относятся и научные знания о системах разного типа, как они формулируются в общей теории систем, специальных теориях систем и др. В науке 20 в. большое внимание уделяется исследованию языка как системы (лингвистическая система); в результате обобщения этих исследований возникла общая теория знаков – семиотика . Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных систем (металогика, математика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике, информатике и др.

При использовании других оснований классификации систем выделяются статичные и динамичные системы. Для статичной системы характерно, что ее состояние с течением времени остается постоянным (напр., газ в ограниченном объеме – в состоянии равновесия). Динамичная система изменяет свое состояние во времени (напр., живой организм). Если знание значений переменных системы в данный момент времени позволяет установить состояние системы в любой последующий или любой предшествующий моменты времени, то такая система является однозначно детерминированной. Для вероятностной (стохастической) системы знание значений переменных в данный момент времени позволяет предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношений системы и среды системы делятся на закрытые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые (постоянно происходит ввод и вывод не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая система в конечном счете достигает состояния равновесия, при котором остаются неизменными все макроскопические величины системы и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой системы является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но продолжаются макроскопичные процессы ввода и вывода вещества.

Основная задача специализированных теорий систем – построение конкретно-научного знания о разных типах и разных аспектах систем, в то время как главные проблемы общей теории систем концентрируются вокруг логико-методологических принципов анализа систем, построения метатеории системных исследований.

Литература:

1. Рапопорт А. Различные подходы к общей теории систем. – В кн.: Системные исследования. Ежегодник 1969. М., 1969;

2. Гвишиани Д.М. Организация и управление. М., 1972;

3. Огурцов А.П. Этапы интерпретации системности знания. – В кн.: Системные исследования. Ежегодник 1974. М., 1974;

4. Садовский В.Н. Основания обшей теории систем. М., 1974;

5. Захаров В.Н ., Поспелов Д.Α. , Хазацкий В.Е. Системы управления. М., 1977;

6. Уемов А.И. Системный подход и общая теория систем. М., 1978;

7. Месарович М. , Такахара Я. Общая теория систем: математические основы. М., 1978;

8. Афанасьев В.Г. Системность и общество. М., 1980;

9. Кузьмин В.П. Принцип системности в теории и методологии К.Маркса. М., 1983;

10. Блауберг И.В. Проблема целостности и системный подход. М., 1997;

11. Юдин Э.Г. Методология. Системность. Деятельность. М., 1997;

12. Агошков Е.Б. , Ахлибинский Б.В. Эволюция понятия системы. – «ВФ», 1998, № 7;

13. Modern Systems Research for the Behavioral Scientist. A Sourcebook, ed. by W.Buckley. Chi., 1968;

14. Bertalanfy L.V. General System Theory. Foundations, Development, Applications. N. Y., 1969;

15. Trends in General Systems Theory, ed. by G.J.Klir. N. Y., 1972;

16. Laszlo E. Introduction to Systems Philosophy. N. Y., 1972;

17. Sutherland J.W. Systems: Analysis, Administration and Architecture. N. Y., 1975;

18. Mattessicq R. Instrumental Reasoning and Systems Methodology. Dortrecht – Boston, 1978;

19. Rappoport A. General System Theory. Cambr. (Mass.), 1986.

20. См. также лит. к ст. Системный подход , Системный анализ .

В.Н.Садовский